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Factors for Judging Landing Success
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Factor 0:
Hardware 

Integrity/Health

Sampling Performance

Power Availability

Thermal Safety

Telecom Performance

DDL Contamination 
& Alteration of Surface

Science Relevance

Imaging Performance

DDL Success is judged by how it impacts the success of the surface mission



Philae Lander on Comet CG
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Viking I & II (1976)
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Viking I and Big Joe
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Mars Pathfinder (1997)
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Petals & SA 
Opened: L+90 min

Lander Separation: E+ 325 s, L – 95 s

Heatshield Separation: E+ 315 s, L – 105s

Parachute Deployment: E+ 295 s, 11.8 km, 430 m/s (1500 km/hr)

Cruise Stage Separation: E- 15m

Deflation: L+20 min

Airbags Retracted:
L+74 min 

Airbag Inflation:  355 m, L - 6.5 s

Bridle Cut: L- 3 s,  0 m/s, 12 m

Rocket Firing:  L- 6 s, ~110 m, 70 m/s (250 km/hr)  

L = Landing: ~E+420 s Roll-Stop:L+2 min

Entry Turn & HRS Freon Venting: E- 90m

Entry: E- 0 s, 125 km, 5.7 km/s (20,000 km/hr)

Bridle Deployed: E+ 335 s, L – 85 s
Radar Ground Acquisition: L - 30 s, 2.4 km, 75 m/s (270 km/hr)

Bounces

Entry, Descent & Landing Timeline
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Wind Induced Horizontal Velocity

Vh(tbc) = Vh(tRAD) + ∫ FRAD/m * sin(b) dt

RAD Induced Horizontal VelocityInitial Horizontal Velocity

b

Vh

Bridle Line

RAD Induced Horizontal Velocity
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Transverse Impulse Rocket System 
(TIRS)

Bridle Cut

DV

DV

RAD Ignition
IMU
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DIMES SCENARIO 

1st image 

2000m 

1700m 

1400m 

Altitude 

2nd image 

3rd image 

First Pair Tracking Second Pair Tracking 

MER-A/Spirit, Gusev Crater, January 4th, 2004 

DIMES RESULT 

DIMES camera 
and radar altimeter 

Inertial Measurement Unit 
inside lander 

Descent Image Motion Estimation System 
(DIMES)

First use of Terrain Relative Navigation (TRN)

Pre-Decisional Information – For Planning and Discussion Purposes Only



Spirit Landing in January 2004
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12

2012 Curiosity 
Rover

2011 
Electric Mini 
Cooper
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Airbags Legs

Pallet

How to land a 1 ton rover on Mars?
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The SkyCrane is Born
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Continuous Control Through Touchdown
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Terrain Adaptable Mobility
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Touchdown Horizontal Velocity 
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2.4  m/sec 

0.75 m/sec 

1.4  m/sec 

0.5  m/sec 

Parachute + Airbag  

MPF: Parachute +  Airbag + RAD Rockets 

MER: MPF + TIRS/DIMES 

Viking/Phoenix Legged Lander 

MSL SkyCrane 

History of Mars Touchdown Velocities
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6/20/2017 The technical data in this document is controlled under the U.S. Export Regulations; release to foreign persons may require an export authorization. 
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<300m

Multi-X is enabled by Terrain Relative 
Navigation (TRN)

Mars 2020: Terrain Relative Navigation
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The Pillars of DDL for Europa
1. Terrain Relative Navigation (TRN) for reduced landing ellipse size

2. Hazard Detection to avoid lander-scale hazards

3. SkyCrane architecture for soft landing (i.e. Factor 0) and surface alteration 
avoidance

4. Adaptable Lander Stabilizers to accommodate rough terrain

5. Tolerance of radiation induced resets and failures

6. Landing Site Selection
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Pillar 1: TRN-Enabled Reduced Landing Ellipse

Terrain Relative Navigation (TRN) for reduced (200m) landing ellipse size to improve the 
probability of finding landing areas that:

– contain relevant science within the landing area
– assure a low horizon mask for guaranteeing required telecom performance 
– assure high probability of finding a flat surface at the lander scale 
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No TRN



Pillar 2: Hazard Detection & Avoidance
On-board Hazard Detection and Avoidance to: 

– land within the capability of the landing gear to achieve a close to level lander deck
– improve sample-ability of surface
– minimize horizon mask for improved telecom performance and imaging of landing area

9/10/2018 The technical data in this document is controlled under the U.S. Export Regulations; release to foreign persons may require an export authorization. 
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Pillar 3: SkyCrane Landing Architecture
SkyCrane landing architecture to:

– enable soft landing speeds to avoid damaging 
the lander (i.e. Factor Zero)

– improve landing stability
– reduce surface alteration and contamination
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VV @ Touchdown ≤ 0.8 m/s
VH @ Touchdown ≤ 0.3 m/s

30 deg Canted Engines

10m Bridle



Pillar 4: Adaptable Stabilizers
Adaptable Lander Stabilizers to:

– reduce post landing deck tilt 
– improve lander stability in order to facilitate 

sampling operations
– achieving a lower deck altitude in order to 

facilitate sampling operation
in the presence of large 1m terrain relief 
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Pillar 5: Radiation Tolerant Avionics

5. Tolerance of radiation induced resets and failures

9/10/2018 Pre-Decisional Information – For Planning and Discussion Purposes Only 26

Ultra-high Radiation



Pillar 6: Landing Site Selection Process
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DDL Concept of Operations

NOT TO SCALE

Deorbit

//

Coast

DOS Jettison 
& Avoidance

Flyaway

Powered Approach

Wait for Powered 
Approach

Altitude Correction

Visual Odometry
for Hazard Detection

Hazard Detection

Visual Odometry
for Touchdown

Constant Velocity

Constant Deceleration

Sky Crane

Hazard Avoidance

TRN: Initial Localization

Hover

Ground Altitude 
Update

TERMINAL DESCENT

Dual-mode lidar for altimetry 
and hazard detection
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Comparisons with Viking and MSL
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Conclusions
• Landing technologies have evolved since Viking enabling:

– Reduced landing ellipse size
– Reduced touchdown velocities
– On-board Hazard Detection
– Improved landing gear terrain robustness

• A spacecraft can be designed TODAY that can land on Europa with an 
acceptable probability of success

• Waiting for the results from Europa Clipper to influence the Lander 
design would most likely result in no changes from the current design

• Let’s do it!
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